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This paper is a critique of the ability of the Brinkman-Forchheimer equation to adequately 
model f low in a porous medium and at a porous-medium/clear-fluid interface. It is 
demonstrated that certain terms in the equation as commonly used require modification, 
and that there is a difficulty when using this equation to deal with a stress boundary 
condition. 
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I n t r o d u c t i o n  

This article is a response to the presentation by Vafai and Kim 1 
of an "exact solution" to an "important and classical problem" 
involving the fluid mechanics of the interface region between 
a porous medium and a fluid layer. The opportunity is taken 
to comment on the wider aspects of modeling the flow in a 
saturated porous medium by means of a Brinkman-Forchheimer 
equation, which is currently popular among contributors to the 
heat transfer literature. 

Vafai and Lim t dealt with a steady-state situation, so in order 
to widen the discussion we will consider a general equation as 
formulated by Hsu and Cheng, 2 namely, 

I-av v .v \7  ¢ + ¢2 v [-~e~OV F~lvlv-I 

Here v is the volume-averaged Darcy seepage velocity, p is the 
volume-averaged pressure, and tp is the porosity. When use has 
been made of the incompressibility condition ~ .  v = 0, Equation 1 
can be written as 

[-1 c~v 1 -] Fplvlv 
q~ K K '/2 (2) 

This may be compared with Darcy's law, which is simply 

0=  --~pf t/fV 
K (3) 

The last term in Equation 2 is the Forchheimer quadratic 
drag team in the form recommended by Joseph, Nield, and 
Papanicolaou. 3 Later in this article, we shall consider the 
appropriateness of each of the other terms in Equation 2. An 
equation similar to Equation 2 was obtained by Vafai and 
Tien. 4 

S t a t u s  o f  t h e  B r i n k m a n  e q u a t i o n  

Equation 1 was obtained by Hsu and Cheng 2 by the process 
of volume averaging of the momentum equation for flow over 
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a dilute random array of spheres. Our concern is not about the 
way in which Hsu and Cheng z have handled this equation, but 
rather its use by other authors who have been unaware of its 
limitations. Equation 1 (or one of its variants) has been popular 
with authors because, when put in nondimensional form, it has 
provided them with a parameter--namely,  the Darcy number 
D a = K / L  2, where L is an appropriate macroscopic length 
scale--that can be used to relate flow in a porous medium 
(finite Da) with flow in a clear fluid (Da ~ 00). Equation 1 also 
enables authors to treat a composite region, which is filled 
partly with porous medium and partly with clear fluid, as a 
single continuum with certain parameters that change value 
as one crosses the porous-medium/clear-fluid interface; this 
facilitates numerical computation. Our point is that this global 
treatment may fail to deal adequately with the distinctive 
features of flow in a physical porous medium. 

A basic drawback of the Brinkman equation is that its usage 
cannot be rigorously justified except when the porosity is close 
to unity. According to the analysis of Lundgren, ~ the self- 
consistent formulation of Brinkman breaks down when ¢ < 0.6 
(which is the case for most naturally occurring media; some 
exceptions are sponges and some forms of lava). A question 
arises about the value of the coefficient of V2v in Equation 2. 
Is this effective viscosity Pc equal to #f/~ or something closer 
to #f, as some authors have suggested? It has not been possible 
to directly check the alternatives against experiments because, 
as pointed out by Kim and Russel, 6 all the available experi- 
mental data pertain to media whose porosity is outside the 
range for which rigorous theories are valid. 

Some authors have justified their use of the Brinkman 
equation on the grounds that it enabled them to satisfy the 
no-slip condition on a rigid boundary, a requirement they 
deemed to be necessary. In most practical cases, the Darcy 
number Da will be very small and the Brinkman term (the one 
involving V2v) will have an effect only in thin layers adjacent 
to a rigid boundary, specifically within a distance K '/z (dimen- 
sional) or Da '/z (nondimensional) of the boundary. This fact 
was noted by Vafai and Tien 4 and others. In many cases the 
reduction in velocity in this thin layer will be masked by an 
increase in velocity (the channeling effect) due to the increase 
in porosity near the wall, this increase resulting from the fact 
that solid particles cannot pack as tightly there as they can in 
the interior of the medium. 7 If one is not prepared to account 
for this porosity variation, then the use of the Brinkman term 
may be a complication that leads to no benefit. 
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Modeling an interface 

Now we turn to the use of the Brinkman equation in modeling 
a porous-medium/clear-fluid interface, as in the paper by V a f a i  

and Kim. 1 Since both the Brinkman and Navier-Stokes 
equations are of second order in spatial derivatives, four 
matching conditions are needed. On physical grounds, one 
clearly needs the continuity of four quantities: tangential 
velocity, normal velocity, tangential stress, and normal stress. 
There is no problem about implementing the requirement that 
the velocity components be continuous. One can simply match 
the seepage velocity in the medium with the velocity in the 
clear fluid. The interface of the porous medium contains both 
pores and solid particles. In the pores, the fluid velocity in the 
porous medium matches with the fluid velocity outside the 
medium. Over the solid portion of the interface, the velocity is 
zero both in the medium (obviously) and in the neighboring 
clear fluid (because of the no-slip condition). The average 
velocity in the porous medium thus matches with the average 
velocity in the neighboring clear fluid. 

In the case of the tangential stress, the situation is different. 
One would like to match up the average viscous tangential stress, 
and hence the average velocity shear, as Vafai and Kim ~ d i d  

in their Equation 3c, but there is a problem in doing this that 
hitherto has been overlooked. Over the pore section of the 
interface, the velocity shear is continuous; however, this is not 
the case over the solid section. In the solid the velocity shear 
is identically zero, but in the adjacent clear fluid it has in general 
some indeterminate nonzero value. Therefore, the averaged 
velocity shears do not match. We conclude that Vafai and 
Kim, 1 following several of their predecessors, have used boun- 
dary conditions that overdetermine the physical problems. 
When one uses the Darcy equation (instead of the Brinkman 
equation) in the porous medium, the difficulty can be side- 
stepped. Now one requires only three matching conditions; two 
of these are provided by the continuity of tangential velocity 
and normal velocity, and the Beavers-Joseph boundary con- 
dition provides the third. This last condition contains an 
empirical constant, to be determined experimentally, and this 
permits the needed flexibility in modeling the tangential stress 
requirement. 

Vafai and Kim ~ wisely stated that they were "not trying to 
resolve a complex question with regard to the physical nature 
of the interface." We now emphasize this. An "exact" solution 
of the Brinkman-Forchheimer/Navier-Stokes equation system 
is welcome in the same way that an "exact" similarity solution 
of a boundary-layer system of equations is welcome, but its 
limitations should be appreciated. The use of the Brinkman 
equation leads to an overestimate of the extent to which motion 

produced in the clear fluid will penetrate into the porous 
medium. 

The situation with respect to the averaging of normal stress 
is somewhat similar to that of tangential stress, but there is an 
additional factor involved. The normal stress is the sum of a 
pressure term and a viscous stress term. Some authors, e.g., 
Vafai and Kim, s have argued that the pressure, being an 
intrinsic quantity, has to be continuous across the interface. 
Since the total normal stress is continuous, that means that the 
viscous component of stress, and hence the normal rate of 
strain, must also be continuous. Such authors have over- 
determined the system of equations. It is true that the pressure 
has to be continuous on the microscopic scale, but that does 
not mean that it has to be continuous on the macroscopic scale. 
The interface surface is an idealization of a thin layer in which 
the pressure can change substantially because of the presence 
of the solid material; the pressure on one side of a solid particle 
can differ from the pressure on the other side. In practice, the 
viscous term in the normal stress may be small compared with 
the pressure, and in this case the continuity of total normal 
stress does reduce to the approximate continuity of pressure. 

The local  t i m e - d e r i v a t i v e  iner t ia l  t e r m  

We now consider the inertial terms on the left-hand side of 
Equation 2. It has long been realized that the local time- 
derivative inertial term ~0-1 dv/dt is usually small compared 
with the Darcy drag term on the right-hand side and so can 
be neglected. In most practical situations the velocity responds 
to an imposed pressure change within a second or less. 
(Incidentally, it is not necessary to retain the tp-I  dv/~t term 
in the investigation of oscillatory convective instabilities; these 
involve a beating between two or more convective modes and 
so differ from oscillatory hydrodynamic instabilities.) The 
~p-1 av/dt term may be important if an oscillatory pressure 
gradient is imposed. The question then arises as to whether the 
coefficient ~p- 1 is correct or not. Hitherto it has been assumed 
that the coefficient is always correct. It has not been appreciated 
that when the pores are organized on a scale greater than the 
characteristic pore diameter, e.g., when the medium contains 
tubes or channels, the assumption that a partial derivative with 
respect to time permutes with a volume average then breaks 
down, and therefore the tp-~dv/dt term is incorrect. The 
response to pressure changes in wide tubes is slower than that 
in narrow tubes. 

To illustrate this, let us consider an ideal medium, one in 
which the pores are identical parallel tubes of uniform circular 
cross section of radius a. (One can make the structure connected 

N o t a t i o n  

a Tube radius, m 
c a Acceleration coefficient tensor 
Da Darcy number, K/L  ~ 
Dp Particle/pore diameter, m 
F Forchheimer coefficient 
J0 Bessel function 
K Permeability, m 2 
L Characteristic length, m 
Nij Contribution from fractures to the acceleration tensor 

(c.)ij 
p Volume-averaged fluid pressure, Pa 

Pt Intrinsic fluid pressure, Pa 
t Time, s 
t o Characteristic time, s 
v Darcy seepage velocity, m s-  1 

V Intrinsic velocity, v/~b 

Greek symbols 
6 o Kronecker delta tensor 
21 Zero of the Bessel function Jo 

Dynamic viscosity of fluid, kg m -  1 s -  1 
pf Density of fluid, kg m -  3 
~p Porosity 
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by adding some very fine connecting tubes without qualitatively 
affecting the argument.) The time-dependent Darcy equation 

prep- 10v/Ot = - V p -  (#/K)v (4) 

leads to the prediction that in the presence of a constant pressure 
gradient, any transient will decay like exp[ - (l~q~/Kpf)t]. From 
the exact solution for a circular tube (see, for example, formula 
(4.3.19) of Batchelor9), one concludes that a transient will decay 
approximately like exp[-O.~#/a2pf)t],  where 21 = 2.405 is the 
smallest positive root of Jo(2) = 0, where Jo is the Bessel function 
of the first kind of order zero. In general, these two exponential 
decay terms will not be the same. It appears that the best that 
one can do is to replace Equation 4 by 

pfc=. (Ov/Ot) = - V p -  (u/K)v (5) 

where ca is a constant tensor that depends sensitively on the 
geometry of the porous medium and that is determined mainly 
by the nature of pore tubes of largest cross sections (since in 
the narrower ones, the transients decay more rapidly). We 
propose that e. be called the acceleration coefficient tensor of 
the porous medium. In general it will take the form 

(ea)ij  = (~9- 16ij~- Nij (6)  

where N~j is the contribution from "fractures." For  the special 
medium introduced above, in which we have unidirectional 
flow, the acceleration coefficient will be a scalar, 

Ca=a2/A~K (7) 

If the permeability K is estimated by means of the Carman-  
Kozeny formula 

K = Dp2 (p3 

180 (1-~o) 2 (8) 

and if the pore/particle diameter Dp can be identified with a/7 
where 7 is some constant, then 

Ca = 180T2(1 _ tp)2/A21tp3 =31.172(1 __ ( p ) 2 / t p 3  (9) 

The ratio of the time-derivative term to the Darcy resistance 
term is capfK/#to, where t o is the characteristic time of the 
process being investigated. Transients decay rapidly when this 
quantity is small, as is usually the case. The exception is when 
the kinematic viscosity ~/flf of the fluid is small compared with 
K/to. 

T h e  c o n v e c t i v e  i n e r t i a l  t e r m  

Finally, we consider the validity of the inclusion of the second 
term on the left-hand side of the Brinkman-Forchheimer 
equation (Equation 2). Joseph, Nield, and Papanicolaou 3 
expressed the view that the convective term involving (v.V~)v 
in a Forchheimer equation should be omitted because the effect 
of inertial terms quadratic in the velocity is already properly 
accounted for by the quadratic drag term involving [vlvl. We 
now give a new argument for why it is inappropriate to include 
the (v.~)v term. If it is included, and if the forces represented 
by the right-hand side of Equation 2 are in balance, then that 
equation reduces to 

D 
D~ ( p fv )  = 0 (1 0 )  

where D/Dt is the material derivative O/Ot + (v. ~). Equation 10 
implies that a small particle retains its momentum when it is 
displaced to an arbitrary neighboring point. This is true for the 
ease of a clear fluid, but in general it is incorrect for a porous 
medium, because solid material will have an impeding effect. 
(We are, of course, considering a fixed solid matrix.) 
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To further illustrate this objection, we consider the extent to 
which it is possible to transmit longitudinal momentum in a 
transverse direction. To highlight the argument, let us consider 
a medium in which the pores consist of channels along the x-, 
y-, and z-directions. If one forces fluid to flow down a single 
x-channel, that will cause flow along the y- and z-channels but 
will not produce any significant flow on the average in neigh- 
boring x-channels. A consequence is that, on physical grounds, 
one would expect that it should be difficult to produce significant 
motion in the bulk of a dense porous medium, with a fixed 
solid matrix, by moving just a rigid boundary; one would expect 
significant motion to be confined to a thin layer near the 
boundary. Indeed, that is the form of motion predicted when 
one solves a Brinkman equation with the (v. ~')v term omitted 
(see, for example, Nieldl°), but it is not the form predicted if 
one includes the (v. ~7)v term. In the latter case, the prediction 
is that all the fluid will ultimately be set in motion. (A further 
consequence of our physical argument is that true turbulence, 
in which there is a cascade of energy from large eddies to smaller 
eddies, does not occur on a macroscopic scale in a dense porous 
medium.) 

This leaves the question of why the averaging process leads 
to misleading results. The averaging process leads to the loss 
of vital information about the way in which the geometry of 
the solid matrix affects the flow. It has been assumed by some 
authors, e.g., Vafai and Tien, 4 that it is sufficient to allow for 
this loss of information by adding a Forchheimer quadratic 
drag term. It is now suggested that a better approximation for 
the case of dense porous media is obtained by substituting a 
quadratic drag term for the (v.~')v term. As Joseph, Nield, and 
Papanicolaou 3 pointed out, this macroscopic drag arises as a 
result of form drag on the solid particles. It is independent of 
the boundary friction (and hence independent of the viscosity). 
It acts in a direction opposite to the seepage velocity v. It has 
been shown 1 ~-13 that, while microscopic inertial forces may be 
important, macroscopic inertial forces are negligible in com- 
parison with the macroscopic drag forces in the range of pore 
Reynolds numbers encountered in most practical situations. It 
seems that the necessity for the fluid to flow around the solid 
particles gives rise to a reduction in the coherence of the fluid 
momentum pattern, so that on the macroscopic scale there is 
negligible net transfer of momentum in a direction transverse 
to the seepage velocity vector. 

As a footnote, it is pointed out that there is a further 
peculiarity arising from the approach of Vafai and Tien. 4 They 
gave a demonstration leading to the conclusion that "a formu- 
lation like Brinkman's is applicable only for two-dimensional 
problems." On general physical grounds, one would expect that 
the applicability (or lack of it) would be independent of whether 
the problem was two- or three-dimensional. 

C o n c l u s i o n  

Our conclusion is that flow in a dense porous medium (one in 
which the porosity is not close to unity) is best modeled by 
omitting the (v.~)v term and modifying the time-dependent 
term and the Brinkman term so that the momentum equation is 

~v 
Pf~a ° ~ = - -  ~ p f  "1L # e f f ~ 2  v - -  ~[~fV - -  g p l v l v  

K K 1/2 (11) 

Further, if in that case (for a dense medium) one has to include 
the Brinkman term, then porosity variation should also be 
allowed for. A porous-medium/clear-fluid interface is best dealt 
with by dropping the Brinkman term and using the Beavers- 
Joseph boundary condition. 
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